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SUMMARY

This paper presents a general nonlinear model predictive control scheme for path following problems. Path
following problem of nonlinear systems is transformed into a parameter-dependent regulation problem.
Sufficient conditions for recursive feasibility and asymptotic convergence of the given scheme are presented.
Furthermore, a polytopic linear differential inclusion-based method of choosing a suitable terminal penalty
and the corresponding terminal constraint are proposed. To illustrate the implementation of the nonlinear
model predictive control scheme, the path following problem of a car-like mobile robot is discussed, and the
control performance is confirmed by simulation results. Copyright © 2014 John Wiley & Sons, Ltd.
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1. INTRODUCTION

Nonlinear model predictive control (NMPC), also referred to as receding horizon control or moving
horizon optimal control, has been viewed as one of standard control techniques for nonlinear sys-
tems with input and state constraints [1–3]. A control sequence is obtained by solving online, at each
sampling instant, a finite horizon open-loop optimal control problem, which uses the current state
of the system as the initial state; the first control action in this sequence is applied to the system.
Because it is difficult to obtain an analytical solution to constrained nonlinear optimal control prob-
lem by solving the related Hamilton-Jacobi-Bellman equation, NMPC has aroused many interests in
both the academic community and the industrial society. Over the last decade, academic researches
of NMPC have made significant progresses in issues on both stability and robustness [2, 4], and its
applications have spanned a wide range from process control [3] to aerospace [5] and to control of
transportation networks [6].

Normally, NMPC is used to deal with the so-called regulation problem, that is, to regulate the
state of a system to a fixed target state [7, 8]. However, when the target state changes, the feasibility
of the controller may be lost, and the controller fails to track the target states.

Besides the regulation problem, tracking control and path following are the other two fundamen-
tal control problems. Tracking control of systems aims at tracking a given time-varying reference
trajectory. NMPC for tracking control has been discussed in [9–11] and references therein. Instead
of arbitrary but smooth trajectories, only piecewise constant references are considered. A receding
horizon control scheme for tracking control of a nonholonomic mobile robot is developed in [12],
where a control Lyapunov-based scheme is chosen to determine the terminal penalty and the termi-
nal constraint of the NMPC optimization problem for the considered systems. Thus, the proposed
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scheme is only typically fit for the given systems. The task of the path following problem is to steer
a system to follow a reference path. In contrast to the tracking control problem, the reference path is
not parameterized in time but in its geometrical coordinates. The papers [13, 14] propose an NMPC
framework for solving the path following problem and give sufficient stability conditions. Although
some methods of choosing the terminal ingredients of the MPC optimization problem are proposed,
they are either conservative or rely on the system property of differential flatness. The introduced
NMPC framework optimizes the time evolution of the path parameter, but the initial value of the
path parameter is not considered in the online optimization problem.

This paper presents a more general NMPC scheme for the path following problem, where the
time evolution of the path parameter as well as its initial value are determined in the online opti-
mization problem. Firstly, the path following problem of nonlinear systems is transformed into a
parameter-dependent regulation problem. Following a discussion of recursive feasibility and asymp-
totic convergence, a polytopic linear differential inclusion (PLDI)-based method is adopted to
choose the terminal penalty and the terminal constraint. To illustrate the implementation of the pro-
posed NMPC scheme, the path following problem of a car-like mobile robot is discussed, and the
control performance is confirmed by simulation results.

The remainder of this paper is organized as follows. Section 2 sets up the path following problem.
In Section 3, an NMPC scheme to the path following problem is introduced with a proof of asymp-
totic convergence and recursive feasibility. A method for choosing a suitable terminal penalty and
the related terminal constraint is presented in detail. Section 4 shows the implementation of the pro-
posed NMPC scheme for the path following problem of a car-like mobile robot. A short summary
is given in Section 5.

2. PATH FOLLOWING PROBLEM

For a system, an intuitive understanding of the path following problem is to approach a reference
path as close as possible. Thus, it is necessary to clarify the definition of the system and the reference
path before formulating the path following problem.
A continuous time nonlinear system

Px.t/ D f .x.t/; u.t//; x.t0/ D x0; (1)

is considered, which has state and input constraints

x 2 X � Rn; u 2 U � Rm; (2)

where f .x; u/ W X � U �! Rn is continuously differentiable in x and u, U � Rm is compact, and
X � Rn is connected.

The reference path is a twice continuously differentiable geometric curve, which can be defined
as a set of points r parameterized by a scalar s,

P D ¹r 2 Rnj r D p.s/º; (3)

where the function p W R1 ! Rn is a twice continuously differentiable function. The scalar s is
constrained by s 2 S � R1, where S is a compact set. The time evolution of s.t/ is not necessary
to be known a priori but influenced by a virtual input v.t/ that is a DOF to choose,

Ps.t/ D v.t/; v 2 V � R1: (4)

Remark 2.1
If the given path is not smooth enough, a continuously differentiable geometric curve can be used
to approximate it and can be used as the reference path.
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Remark 2.2
If the reference path is in a subspace of Rn, that is, P0 D ¹r0 2 Rn0 j r0 D p.s/º with n0 < n, then
P can be chosen as

P D
²

r 2 Rn j r D
�

r0
0

�³

with 0 2 Rn�n0 .

The path following problem is the following:
Given a geometric path P defined by (3), find admissible control values u.t/ and v.t/ such that

lim
t!1

xe.t/ D 0; (5)

where xe is defined by

xe.t/ WD x.t/ � p.s.t//: (6)

Two technical assumptions are made:

Assumption 1
The reference path P is contained in the state constraint set of the system (1), that is, P � X .

Assumption 2
There exist admissible inputs u 2 U and v 2 V , such that the dynamics of the state x.t/ 2 X and
the parameter s.t/ 2 S satisfy

Pxe.t/ D 0; (7)

if xe.t/ D 0.

Remark 2.3
Assumption 1 ensures the existence of at least one x 2 X matching each point on the reference path
P . Together, Assumption 1 and Assumption 2 guarantee that the system (1) can indeed follow the
given path (3).

The dynamics of the error system (6) is

Pxe D Px � Œp.s/�0 D f .x; u/ �
@p
@s
v: (8)

It shows that the error dynamics are continuously differentiable in x, u, s, and v because f .�; �/ is
continuously differentiable and p.�/ is twice continuously differentiable. The dynamics of the error
system (6) is a function of xe , u, s, and v, because x D xe C p.s/ and

Pxe D f .xe C p.s/;u/ �
@p
@s
v: (9)

Assumption 3
There exist a continuously differentiable function g.�; �/ and a control input ue such that

Pxe WD g.xe;ue/; (10)

where the function g is parameter-dependent in s and v, the control input ue 2 Rm is an implicit
function of u, s, and v.

Because the control input of the error system ue is an implicit function of u, s, xe and v, abuse of
notation, denote h.xe;u; s; v// as the expression of the implicit function. Then, Equation (10) can be
rewritten as xe.t/ D g.xe; h.xe;u; s; v//, which confirms that the function g is parameter-dependent
in s and v.
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In terms of Assumption 1 and Assumption 2, .0; 0/ is the equilibrium of the error dynamics (10),
that is, g.0; 0/ D 0. The term ue has to satisfy the following assumption:

Assumption 4
There exist a compact set Ue such that ue 2 Ue and 0 2 Ue .

Remark 2.4
Assumption 4 is only used to find a terminal set that will be introduced in the next section.

Remark 2.5 (A way to find the function g.xe; ue/)
Suppose that there exists continuously differentiable functions h1.xe; s; v/ and h2.xe; s; u; v/
such that

f .xe C p.s/; u/ �
@p
@s
v D h1.xe; s; v/C h2.xe; s;u; v/;

and there exist s 2 S, v 2 V , and u 2 U such that h1.xe; s; v/ D 0 and h2.xe; s;u; v/ D 0, while
xe D 0, we can choose ue WD h2.xe; s;u; v/, which results in g.xe;ue/ D h1.xe; s; v/C ue .

Because of Assumption 2, we know that while xe.t/ D 0, there exist admissible inputs u 2 U and
v 2 V , such that the dynamics of the state x.t/ 2 X and the parameter s.t/ 2 S satisfy Pxe.t/ D 0.
That is,

0 Dg.0; ue/

Df .p.s/; u/ �
@p
@s
v:

Thus, one option is to choose h1.xe; s; v/ � 0 and h2.xe; s; u; v/ D f .xe C p.s/;u/ � @p
@s
v.

Therefore, the existence of the functions h1 and h2 is guaranteed.

Remark 2.6
By choosing g.�; �/ and ue such that Assumption 3 is satisfied, we transform the path following
problem into a parameter-dependent regulation problem, where .0; 0/ is the target state, s and v are
the time-varying parameters.

Remark 2.7
Fundamental control problems can be roughly classified into three groups, which are point stabi-
lization, tracking, and path following. Point stabilization and trajectory tracking problems can be
seen as two special cases of the path following problem. While s.t/ � c for all t , where c is a con-
stant, the path following problem reduces to a point stabilization (regulation) problem; while s.t/ is
exactly predefined, the path following problem is equal to a trajectory tracking problem. Comparing
with the trajectory tracking problem, the path following problem has one additional DOF, which is
to regulate the dynamics of s.

3. NONLINEAR MODEL PREDICTIVE CONTROL FOR PATH FOLLOWING PROBLEMS

In this section, we will discuss an NMPC scheme for the path following problem. After formulating
the online optimization problem, a proof of recursive feasibility and asymptotic convergence of the
introduced NMPC scheme is presented. Furthermore, a PLDI-based algorithm is proposed to choose
a suitable terminal penalty and the related terminal constraint.

3.1. Optimization problem and algorithm

In order to formulate the path following problem within the NMPC framework, we consider the
following online optimization problem at time instant t :
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Problem 1

minimize
u.�;x.t//;v.�;x.t//;s.t;x.t//

J.x.t// (11a)

subject to

Px.�; x.t// D f .x.�; x.t//; u.�; x.t///; (11b)

Ps.�; x.t// D v.�; x.t//; x.t; x.t// D x.t/; (11c)

xe.�; x.t// D x.�; x.t// � p.s.�; x.t///; (11d)

u.�; x.t// 2 U ; x.�; x.t// 2 X ; (11e)

v.�; x.t// 2 V; s.�; x.t// 2 S; (11f)

xe.t C Tp; x.t// 2 �; (11g)

with

J .x.t// D E.xe.t C Tp; x.t///C
Z tCTp

t

F.xe.�; x.t//; ue.�; x.t///d�; (12)

where J.x.t// is the cost functional, and Tp is the prediction horizon. The term ue.�; x.t// denotes
the predicted input function of the error system related to x.t/, and xe.�; x.t// represents the pre-
dicted state trajectory of the error system under the control ue.�; x.t//. The termsE.xe.tCTp; x.t///
and xe.tCTp; x.t// 2 � are the terminal penalty and the terminal constraint, respectively, which are
used to guarantee recursive feasibility and achieve asymptotic convergence to the given path. The
term F.�; �/ is the stage cost function, which specifies the desired control performance and satisfies
the following condition.

Assumption 5
F.�; �/ W X �U ! R1 is continuous, and F.0; 0/ D 0 and F.x;u/ > 0 for all .x;u/ 2 X �U n¹0; 0º.

For clarity, u.�; x.t// denotes the predicted input function related to the measured state x.t/ at
time instant t , and x.�; x.t// represents the predicted state trajectory starting from x.t/ under the
control u.�; x.t//, for all � 2 Œt; t CTp�. The notations v.�; x.t//, s.�; x.t//, and xe.�; x.t// refer to
the predicted values of v, s, and xe at time � related to x.t/, respectively.

Remark 3.1
The cost functional J and the terminal constraint xe.t C Tp; x.t// 2 � do not depend explicitly on
the parameter s or v, which is consistent with the fact that s and v only describe a virtual reference
motion.

Suppose the sampling time is ı, the proposed NMPC control law is formally described by the
following algorithm.

Algorithm 1
Step 1: Measure system state x.t/ at time t ,
Step 2: Solve Problem 1 and obtain a feasible (suboptimal) solution s0.t; x.t//, u0.�; x.t// and
v0.�; x.t// for � 2 Œt; t C Tp�,
Step 3: Take the input value u0.�; x.t//, � 2 Œt; t C ı�, as the current input for the system,
Step 4: Take the input value v0.�; x.t// and the initial state s0.t; x.t// to update the path
parameter s.�; x.t// for � 2 Œt; t C ı�,
Step 5: Set t WD t C ı, go to Step 1.

Remark 3.2
The initial state of Ps.t/ D v.t/ is chosen as a determined variable in Problem 1, that is, the reference
motion s.t/ is renewed entirely at each time instant. Thus, it provides an extra DOF of optimization
problem.
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Remark 3.3
Because Problem 1 is a nonlinear and nonconvex optimization problem, in general, it is impossible
to obtain the exact globally optimal solution even if there exists a globally optimal solution.

3.2. Feasibility and stability

As important issues of ensuring feasibility and convergence of the NMPC scheme, the terminal
penalty E.xe/, the terminal set �, and the corresponding fictitious terminal control law �.xe/ are
required to satisfy the following conditions:

B0. � � X ,
B1. �.0/ D 0, and �.xe/ 2 Ue for all xe 2 �,
B2. E.0/ D 0, and E.xe/ satisfies

@E.xe/
@xe

g.xe; �.xe//C F.xe; �.xe// 6 0; (13)

for all xe 2 �.

As a neighborhood of the error state xe D 0,

� WD ¹xe 2 Rn j E.xe/ 6 ˛º; (14)

with ˛ > 0.
Clearly, the terminal set � has the following additional properties:

1. The point 0 2 Rn is contained in the interior of � because of the positive definiteness of
E.xe/.

2. � is closed and connected because of the continuity of E.xe/.
3. � is robustly invariant for the nonlinear system (10) controlled by ue D �.xe/, for all s.�/ 2 S

and v.�/ 2 V because of (13).

Assumption 6
For the error system (10), there exist a locally asymptotically stabilizing controller �.xe/, a termi-
nal set � � X , and a continuously differentiable, positive semi-definite function E.xe/ such that
conditions B0–B2 are satisfied for all xe 2 �.

Assumption 7
There exist s 2 S and v 2 V such that x 2 X and u 2 U , while xe 2 � and ue 2 Ue .

Now, we are ready to show the recursive feasibility of the considered optimization problem and the
asymptotic convergence of the path following problem.

Theorem 1
Suppose that

(a) Assumptions 1–7 are satisfied,
(b) at the initial time instant, Problem 1 has a feasible solution,

then,

1. Problem 1 is feasible for all time instants,
2. the system state x.t/ follows the predefined geometric path P asymptotically, that is,

limt!1 xe.t/ D 0:

Proof
Assume that Problem 1 has a feasible solution at time instant t , which is�
u0.�; x.t//; v0.�; x.t//; s0.t; x.t//

�
for � 2 Œt; t C Tp�. The corresponding input and the state of

the error system (10) are u0e.�; x.t// and x0e.�; x.t//, respectively.
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1. The input u0.�; x.t// is implemented, and the related dynamic of the system (1) is x0.�; x.t//,
for all � 2 Œt; t C ı�. The solution s0.�; x.t// and v0.�; x.t//, � 2 Œt; t C Tp� are used to
obtain the evolution of the system (4). Because neither model-plant mismatches nor external
disturbances are present, x.t C ı/ D x0.t C ı; x.t//. Thus, the remaining piece of the inputs
u0.�; x.t// and v0.�; x.t//, � 2 Œt C ı; t C Tp� satisfy the constraints of Problem 1. Denote
x0.tCTp/ WD x0.tCTp; x.t//. Because x0e.tCTp; x.t// 2 �, it follows from Assumptions 6
and 7 that �.�/ renders� invariant, and there exist s.�; x0.tCTp// 2 S and v.�; x0.tCTp// 2
V such that x.�; x0.t C Tp// 2 X and u.�; x0.t C Tp// 2 U , for all � 2 Œt C Tp; t C Tp C ı�.
The dynamics of the error system (10) under the terminal control law �.�/ is xe.�; x0.t C
Tp// for all � � t C Tp . Therefore, a feasible solution to Problem 1 at time instant t C ı is
.u.�; x.t C ı//; v.�; x.t C ı//; s.t C ı; x.t C ı/// where s.tC ı; x.tC ı// WD s0.tC ı; x.t//,
and

u.�; x.t C ı// WD
²

u0.�; x.t// � 2 Œt C ı; t C Tp/;

u.�; x0.t C Tp// � 2 Œt C Tp; t C Tp C ı�;

v.�; x.t C ı// WD
²
v0.�; x.t// � 2 Œt C ı; t C Tp/;

v.�; x0.t C Tp// � 2 Œt C Tp; t C Tp C ı�:

2. Let us define a Lyapunov-like function candidate as

V.x.t// WD J.x.t//; (15)

for fixed u0.�; x.t//, v0.�; x.t//, and s0.t; x.t//, with � 2 Œt; tCTp�. Note that 0 6 V.x.t// <
C1, which follows directly from the definition of V.�/ and V.x.t// D 0, while x.t/ D
p.s.t//.
At time instant t , the cost functional is

V.x.t// D E
�
x0e.t C Tp; x.t//

�
C

Z tCTp

t

F
�
x0e.�; x.t//; u

0
e.�; x.t//

�
d�: (16)

Note that V.x/ is not unique because only a feasible solution is considered. Considering the
feasible solution at time instant t C ı for Problem 1, and recalling �.�/, which renders �
invariant, we have

J.x.t C ı// D E
�
xe.t C ı C Tp; x0.t C Tp//

�

C

Z tCTp

tCı

F
�
x0e.�; x.t//; u

0
e.�; x.t//

�
d�

C

Z tCTpCı

tCTp

F
�
xe.�; x0.t C Tp//; �.xe.�; x0.t C Tp//

�
d�:

(17)

Because the ‘possible" solution is better than the feasible solution, otherwise, we can use
directly the feasible solution, we have V.x.t C ı// 6 J.x.t C ı//. Thus,

V.x.t C ı// � V.x.t// 6 J.x.t C ı// � V.x.t//

D �

Z tCı

t

F
�
x0e.�; x.t//; u

0
e.�; x.t//

�
d�

C

Z tCTpCı

tCTp

F
�
xe.�; x0.t C Tp//; �.xe.�; x0.t C Tp//

�
d�

CE
�
xe.t C ı C Tp; x0.t C Tp//

�
�E

�
x0e.t C Tp; x.t//

�
:

From the integration of inequality (13), the aforementioned inequality

E
�
xe.t C ı C Tp; x0.t C Tp//

�
�E

�
x0e.t C Tp; x.t//

�

6 �
Z tCTpCı

tCTp

F
�
xe.�; x0.t C Tp//; �.xe.�; x0.t C Tp//

�
d�
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results in

V.x.t C ı// � V.x.t// 6 �
Z tCı

t

F.x0e.�; x.t//; u
0
e.�; x.t///d�:

Clearly, V.x.t// is a monotonically decreasing function and has zero as its low bound. The
state of the error system (10) will converge to zero as time increases [7]. Accordingly, the state
of the system (1) will finally follow the reference path (3), that is, limt!1 xe.t/ D 0.

�

Remark 3.4
The aforementioned proof shows that applying feasible solution to optimization problem at each
time instant is sufficient to guarantee both recursive feasibility and asymptotic convergence. This is
one of the main advantages of the proposed NMPC scheme.

Remark 3.5
Because limt!1 xe.t/ D 0 rather than xe � 0, while t !1; see Theorem 1, the reference path is
not necessary an admissible trajectory of the systems.

3.3. Terminal set with a static terminal control law

To choose a suitable pair of terminal penalty and terminal constraint that satisfies all the assumptions
and conditions earlier, we will propose a PLDI-based method. The calculated terminal control law is
robust with respect to the parameters v and s, and the terminal set is a corresponding robust invariant
set.

Firstly, we discuss how to guarantee the satisfaction of inequality (13), while a quadratic stage
cost F.xe;ue/ WD xTe Qxe C uTe Rue is considered.

Because xe D 0 is an equilibrium of the error system (10), there exists a set †0 such that, for all
xe 2 Xe and ue 2 Ue ,

g.xe;ue/ 2 †0

�
xe
ue

�
;

where Xe � X is a compact set, †0 � Rn�.nCm/ is a parameterized differential inclusion of the
nonlinear system (10) with respect to the parameters s and v.

Because s 2 S and v 2 V , and S and V are compact sets, †0 can be bounded by a PLDI †

† WD Co
®�
A1x B1u

�
; : : : ;

�
ANx BNu

�¯
; (18)

that is, †0 � †. The term N is the number of vertex matrices,
�
Aix Biu

�
is the vertex matrix of

the set †, where i 2 Œ1; N �, Aix 2 Rn�n, and Biu 2 Rn�m.
Note that, since the error system (10) is continuously differentiable, the set † can be obtained by

choosing h
@g.xe ;ue/
@xe

@g.xe ;ue/
@ue

i
2 †;

for all xe 2 Xe , ue 2 Ue , s 2 S, and v 2 V .
Based on the PLDI in (18), a sufficient condition that guarantees the satisfaction of Equation (13)

is proposed, which is given in terms of linear matrix inequalities (LMIs).

Theorem 2
Let Q 2 Rn�n and R 2 Rm�m be given. Suppose that the PLDI of the system (10) is described by
(18) and suppose that there exist a matrix X > 0 with X 2 Rn�n and a matrix Y 2 Rm�n such that2

4AixX C BiuY C .AixX C BiuY /
T X Y T

X �Q�1 0

Y 0 �R�1

3
5 6 0; (19)

for all i 2 Œ1; N �. Then, for the system (10), inequality (13) is satisfied, where E.xe/ WD xTe P xe ,
P D X�1, and �.xe/ D YX�1xe .
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Proof
For simplicity, denote K WD YX�1. By substituting P D X�1 and Y D KX in (19) and by
performing a congruence transformation with the matrix ¹X�1; I; I º, we obtain

2
4A

T
i;cl
P C PAi;cl I KT

I �Q�1 0

K 0 �R�1

3
5 6 0;

where Ai;cl WD Aix C BiuK, I is the compatible identity matrix. It follows from the Schur
complement that the matrix inequality (19) is sufficient to guarantee

Œg.xe; Kxe/�TP C Pg.xe; Kxe/CQCKTRK 6 0: (20)

We choose E.xe/ D xe
TP xe as a Lyapunov function candidate, and ue D Kxe , the time derivative

of E.xe/ along the trajectory of (10) is given as follows:

dE.xe.t//
dt

D Pxe.t/TP xe.t/C xe.t/TP Pxe.t/

D xe.t/T
®
Œg.xe; Kxe/�TP C Pg.xe; Kxe/

¯
xe.t/:

Because of (20), we have

dE.xe.t//
dt

6 �xe.t/TQxe.t/ � xe.t/TKTRKxe.t/:

Thus, the inequality (13) holds, and �.xe/ is the associated terminal control law. �
Theorem 2 shows that �.xe/ and E.xe/ as given earlier can serve as a terminal control law and a

terminal penalty, respectively, for the proposed NMPC scheme.
From the aforementioned discussion, an algorithm is proposed to determine a terminal penalty

matrix P and a terminal set � offline such that inequality (13) holds true, and the input constraints
ue 2 Ue are satisfied.

Algorithm 2
Initialization: The matrices Q 2 Rn�n and R 2 Rm�m be given.
Step 1: Solve LMI (19) to obtain a locally stabilizing linear state feedback law �.xe/ and a
positive definite matrix P ,
Step 2: Find the largest positive ˛ such that � 2 Xe and �.xe/ 2 Ue for all xe 2 �.

Remark 3.6
An algorithm for simultaneous satisfaction of (19) and the input and state constraints are discussed
in [15]. As an alternative, similar algorithms that satisfy (19) and the constraints separately are
proposed in [7, 16].

Remark 3.7
Because the system (1) can follow the reference path if xe D 0 because of Assumptions 1 and 2, the
reference path can be chosen as the terminal set, that is, � WD ¹0º, while LMI (19) has no feasible
solution. To satisfy the Assumption 6, the corresponding terminal penalty and the terminal control
law can be E.�/ WD 0 and �.�/ WD 0, respectively.

4. PATH FOLLOWING CONTROL OF A CAR-LIKE MOBILE ROBOT

To illustrate the implementation of the proposed NMPC scheme, the path following problem of a
car-like mobile robot is considered in this section.
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Figure 1. Path following problem of a car-like mobile robot.

4.1. Problem formulation

A car-like mobile robot is a kind of nonholonomic robot, which is not able to move in the direction
parallel to the wheels’ axes. With definition of a world coordinate system ¹W º composed of axes
Xw and Yw shown in Figure 1, the kinematics model of the car-like mobile robot is described by2

4 PxRPyR
P̨R

3
5 D

2
4 vR cos˛R
vR sin˛R
!v

3
5 ; (21)

where xR and yR denote the position of the robot center of mass with respect to ¹W º, vR is the
magnitude of the robot translational velocity, ˛R denotes the robot moving direction, and !v is the
angular velocity of ˛R.

To depict the path following problem of the car-like mobile robot, Figure 1 shows also a mobile
robot coordinate system ¹MRº with axes Xm and Ym, which is located at the mass of center MR

of the robot, and a path coordinate system ¹MQº composed of axes Xt and Yn, which plays a role
of the body-axis of a Virtual Vehicle to be followed. The Virtual Vehicle moves along the reference
path P and its position MQ is determined by the curvilinear abscissa s.t/. Let vectors PR and PQ
describe the positions of MR and MQ in ¹W º, wRm and wRp present the transformation matrices
from ¹MRº to ¹W º and from ¹MQº to ¹W º, respectively, the position relationship can be deduced:

PR D PQ C wRp

�
xe
ye

	
; (22)

where xe and ye denote the robot position MR with respect to ¹MQº.
Computing the time derivatives of (22) and some calculation leads to the error kinematics model

of the path following problem

Pxe D

2
4 .yec.s/ � 1/v C vR cos˛e
�xec.s/v C vR sin˛e

!v � c.s/v

3
5 (23)

where the error vector with respect to ¹MQº is xe WD Œxe; ye; ˛e�
T , ˛e D ˛R � �p presents the

angular error between the robot moving direction ˛R and the path tangent direction �p . The value
of s is the arc length measured along the path from its origin to the point p.s/, and c.s/ denotes the
path curvature at point MQ.

Based on the error kinematics model (23), the path following problem of a car-like mobile robot
can be formulated as follows:

Given a geometric path P defined by (3), find suitable control laws of v and !v to drive the errors
xe , ye , and ˛e to zero, while vR is assigned with a nonzero magnitude value of the desired velocity.

It is noticed in model (23) that the errors can stay on the equilibrium .xe D 0/ when v
approaches vR.
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4.2. Simulation setup

Considering the geometrical symmetry and sharp changes in curvature, an eight-shaped curve is
adopted as the reference path,

xP D 1:8sin. /

yP D 1:2sin.2 /;
(24)

where  is a path parameter and determines the path point ŒxP ; yP � with respect to the world
coordinate system. It has bounded curvature value of �3:28 6 c.s/ 6 3:28. The changing velocity
of s is bounded by 0 6 v 6 1:2 m/s.

The car-like robot is required to move with a constant velocity vR D 0:7m/s. The angular velocity
is bounded by �2:5 6 !v 6 2:5 rad/s.

By choosing different Lyapunov functions of the positional and angular errors, many nonlin-
ear control approaches have been presented [17–21]. However, most of them rarely take the robot
constraints into account, which are crucial for robot performance, and may even destroy the conver-
gence in some cases [22, 23]. In contrast to them, the proposed NMPC scheme takes the constraints
into account and achieves the expected performance.

4.3. Nonlinear model predictive control law design

To implement the proposed NMPC scheme for the path following problem of a car-like mobile
robot, the error kinematics model (23) needs to be transformed into the form satisfying g.0; 0/ D 0.
Denoting states xe D Œxe1; xe2; xe3�T D Œxe; ye; ˛e�T and defining inputs ue WD Œue1; ue2�T with�

ue1
ue2

�
D

�
�v C vR cos xe3
!v � c.s/v

�
; (25)

the model (23) is rewritten as a candidate of the required error model, where

Pxe D

2
4 xe2c.s/v C ue1
�xe1c.s/v C vR sin xe3

ue2

3
5 : (26)

A quadratic function is selected as the stage cost function,

F.xe;ue/ D xTe Qxe C uTe Rue: (27)

The weight matrices are chosen withQ D 0:5I3 and R D 0:5I2, where Ij denotes the unit diagonal
matrix of dimension j . The prediction horizon is 10, and the sampling time of ı is 0:02 sec.

To choose the terminal penalty and the terminal constraint, we use the scheme presented in
Section 3.3. The terminal penalty is

E.xe.t C Tp// D xe.t C Tp/TP xe.t C Tp/: (28)

The terminal constraint is chosen as a sublevel set of the terminal penalty, that is,E.xe.tCTp// 6 ˛.
The value of P and ˛ comes from Algorithm 2, where the PLDI of the error kinematics model

(23) is required. According to the following partial derivative,

�
@g

@xe1

@g

@xe2

@g

@xe3

@g

@ue1

@g

@ue2

�
D

2
4 0 c.s/v 0 1 0

�c.s/v 0 vR cos xe3 0 0

0 0 0 0 1

3
5 ; (29)

the vertex matrix of the PLDI can be obtained based on the boundary values of v and c.s/, while
they are all bounded variables defined by the reference path.

Here, by defining 0:05 6 vR cos˛e 6 0:7 and by taking the limits of the car-like robot and the
eight-shaped reference path into account, we obtain the following vertex matrices of the PLDI based
on (29),
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�
A1 B1

�
D

2
4 0 3:28 0 1 0

�3:28 0 0:7 0 0

0 0 0 0 1

3
5 ;

�
A2 B2

�
D

2
4 0 �3:28 0 1 0

3:28 0 0:7 0 0

0 0 0 0 1

3
5 ;

�
A3 B3

�
D

2
4 0 3:28 0 1 0

�3:28 0 0:05 0 0

0 0 0 0 1

3
5 ;

�
A4 B4

�
D

2
4 0 �3:28 0 1 0

3:28 0 0:05 0 0

0 0 0 0 1

3
5 :

To satisfy Assumption 4, the range of ue is chosen as jue1j 6 0:5 and jue2j 6 1:44. The terminal
penalty matrix is

P D

2
4 28:36 0 0

0 30:02 8:89

0 8:89 47:04

3
5 ;

and the value of ˛ is 25, which are solved by using Algorithm 2.

4.4. Comparison controller

In order to evaluate the proposed NMPC scheme, a control Lyapunov function based scheme
according to [18] is exploited. It involves the following equations:

�.ye/ D �sign.vR/ sin�1
k2ye

kyek C �0

ı.˛e; �/ D

²
1 if ˛e D �

sin˛e�sin�
˛e��

otherwise

v D vR cos˛e C k3xe

!v D c.s/v C P� � k1.˛e � �/ � yevRı:

(30)

Figure 2. The reference path and real paths based on the nonlinear model predictive control and the nonlinear
controller in (30).
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For some k1; k3 > 0, 0 < k2 6 1, and �0 > 0, this controller guarantees global stability, which
is proven by choosing the Lyapunov function V D 1

2
x2e C

1
2
y2e C

1
2
.˛e � �/

2. Here, the control
parameters are chosen as k1 D 15, k2 D 0:8, k3 D 10, and �0 D 1.

4.5. Simulation results

In the simulation, the robot was started from five different initial positions with different heading
directions. As Figure 2 shows, both controllers are capable of driving the robot to follow the ref-
erence path, but the path based on the NMPC scheme converges faster. Figure 3 shows the values

Figure 3. The velocities v and the angular velocities !v from the nonlinear model predictive control and the
nonlinear controller in (30), which are shown in a solid line and a dashed line, respectively, t 2 Œ0; 20�.
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Figure 4. The angular velocities !v from the nonlinear model predictive control and the nonlinear controller
in (30), which are shown in a solid line and a dashed line, respectively, t 2 Œ0; 0:4�.
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of !v and v from the two controllers. It is clear that the difference only appear at the initial period
of the simulation, and it follows the reference path once the robot steps on the reference path. The
two controllers have similar control performance when the error Pxe is small, because the nonlinear
controller (30) has similar form of the designed ue; see (25). Although the values of v generated
by the nonlinear controller located inside the boundary Œ0; 1:2� during the initial period, Figure 4
shows that the initial errors result in big values of the angular velocity !v generated by the nonlin-
ear controller. However, the NMPC takes the constraints into account, whose outputs are all inside
the boundary values.

5. CONCLUSIONS

This paper presented a general NMPC scheme for the path following problem, where the time evo-
lution of the path parameter and its initial value are all determined online. Not only the asymptotic
convergence and the recursive feasibility of the proposed NMPC scheme, but also a PLDI-based
method to choose the terminal penalty and the terminal constraint were shown. To illustrate the
implementation of the proposed NMPC scheme, the path following problem of a car-like mobile
robot was discussed in detail. Compared with a well-known nonlinear control algorithm, the
advantage of the proposed NMPC scheme is shown in the simulation results.
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